COMP I110/L Lecture 20

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey




Outline

® super in methods

® abstract Classes and Methods

® Polymorphism




super in Methods




Recap

You've seen super in constructors...




Recap

You've seen super in constructors...

public class Base {
public Base (int x) {

J




Recap

You've seen super in constructors...

public class Base {
public Base(int x) { ... }

J

public class Sub extends Base {
public Sub (int x) {
super (x) ;

J




super in Methods

super can also be used in methods when overloading.
Used to execute a superclass’ implementation of a method.




super in Methods

super can also be used in methods when overloading.
Used to execute a superclass’ implementation of a method.

public class Base {
public i1nt returnNum()
return 17;

J




super in Methods

super can also be used in methods when overloading.
Used to execute a superclass’ implementation of a method.

public class Base {

public i1nt returnNum()
return 17;

J

public class Sub extends Base {
public 1nt returnNum()
return super.returnNum() + 3;

J




super in Methods

super can also be used in methods when overloading.
Used to execute a superclass’ implementation of a method.

public class Base {

public i1nt returnNum()
return 17;

J

public class Sub extends Base {
public 1nt returnNum()

return super.returnNum() + 3;
) Returns 17




Example

® Base.java

® Sub.java

® SuperMethodMain. java




abstract Classes
and Methods




Recap - A Problem




abstract Classes

Allows a class to be extended,
but disallows the creation of instances of that class




abstract Classes

Allows a class to be extended,
but disallows the creation of instances of that class

public class Mammal {
public Mammal (String s) { ... }

J




abstract Classes

Allows a class to be extended,
but disallows the creation of instances of that class

public class Mammal {
public Mammal (String s) { ... }

J

new Mammal (“some string”)




abstract Classes

Allows a class to be extended,
but disallows the creation of instances of that class

public class Mammal {
public Mammal (String s) { ... }

J

new Mammal (“some string”)

public abstract class Mammal {
public Mammal (String s) { ... }

J




abstract Classes

Allows a class to be extended,
but disallows the creation of instances of that class

public class Mammal {
public Mammal (String s) { ... }

J

new Mammal (“some string”)

public abstract class Mammal {
public Mammal (String s) { ... }

J

o

iewMEﬂmga_ ' )

Does not compile




Example

® AbstractBase. java

® AbstractSub.java

® AbstractMain. java




abstract Methods

® Methods of abstract classes can also be
defined abstract

® To be overridden later

® abstract methods have no bodies




abstract Methods

® Methods of abstract classes can also be
defined abstract

® To be overridden later

® abstract methods have no bodies

public abstract class Abstract {
public abstract int getValue () ;

J




abstract Methods

® Methods of abstract classes can also be
defined abstract

® To be overridden later

® abstract methods have no bodies

public abstract class Abstract {
public abstract int getValue () ;

J

public class Sub extends Abstract ({
public 1nt getValue() { return 5; }

J




Example

® ArithmeticOperation.java

® Add.java

® Subtract.java




Polymorphism




Revisit

breathe




Cat cat = new Cat(“Tom”);
Dog dog = new Dog (“Rover”);
cat.breathe() ;
dog.breathe () ;




Cat cat = new Cat(“Tom”);
Dog dog = new Dog (“Rover”);
cat.breathe() ;
dog.breathe () ;

Tom the mammal takes a breath
Rover the mammal takes a breath




Cat cat = new Cat(“Tom”);
Dog dog = new Dog (“Rover”);
cat.breathe() ;
dog.breathe () ;

Tom the mammal takes a breath
Rover the mammal takes a breath

Mammal ml = new Cat (“Tom”);
Mammal mZ2 = new Dog (“Rover”);
ml.breathe() ;
m2 .breathe () ;




Cat cat = new Cat(“Tom”);
Dog dog = new Dog (“Rover”);
cat.breathe() ;
dog.breathe () ;

Tom the mammal takes a breath
Rover the mammal takes a breath

Mammal ml = new Cat (“Tom”);
Mammal mZ2 = new Dog (“Rover”);
ml.breathe() ;

m2 .breathe () ;

Tom the mammal takes a breath
Rover the mammal takes a breath




Polymorphism

® “many-forms”

® A Mammal could bea Cat ora Dog

® Specific use in Java: a variable with a

superclass type can hold an instance of any
subclass,too




Polymorphism

® “many-forms”

® A Mammal could bea Cat ora Dog

® Specific use in Java:a variable with a
superclass type can hold an instance of any
subclass,too

Mammal ml
Mammal m2

new Cat (“Tom”) ;
new Dog (“Rover”);




Polymorphism
Significance

Can write code without knowing exactly which
implementation is used.




Polymorphism
Significance

Can write code without knowing exactly which
implementation is used.

public static void method (Mammal m) {
m.breathe() ;

J




Example

® Car.java

® SportsCar.java

® SemiTruck.java

® CarMain.java




Example

® MammalRevisited. java

® CatRevisited. java
® DogRevisited. java

® MammalMainRevisited. java




Polymorphism

1. Static binding/Compile-Time binding/Early binding/Method
overloading.(in same class)

2. Dynamic binding/Run-Time binding/Late binding/Method
overriding.(in different classes)



Polymorphism

Static binding/Compile-Time binding/Early binding/Method overloading.(in
same class)

Method overloading example:

class Calculation {
public void sum(int a, int b) {
System.out.printin(a + b);
}
public void sum(int a, int b, int ¢) {
System.out.printin(a + b + ¢);

}

public static void main(String args|]) {
Calculation obj = new Calculation();
obj.sum(10, 10, 10); // 30
obj.sum(20, 20); //40



Polymorphism

Dynamic binding/Run-Time binding/Late binding/Method overriding.(in different classes)
Method overriding example:

class Animal {
public void move() {
System.out.printIn("Animals can move");

}
}

class Dog extends Animal {
public void move() {
System.out.printIn("Dogs can walk and run");

}
}

public class TestDog {
public static void main(String args[]) {
Animal a = new Animal(); // Animal reference and object
Animal b = new Dog(); // Animal reference but Dog object
a.move(); //output: Animals can move
b.move(); //output: Dogs can walk and run

}
}



